ππ Diario Data Analysis in Transport Systems
ππ Diario Data Analysis in Transport Systems
π 15-10-2024 - Tue
π Theory
βοΈ Projects
π 22-10-2024 - Tue
π Theory
βοΈ Projects
π 24-10-2024 - Thu
LAB Session
π 29-10-2024 - Tue
π Theory
03 - Computational Statistical Inference - DATS
- Contrast of hypothesis - Hypothesis testing
- Level of significance
- Correlation between 2 numeric variables -
- Charts
- Numbers
- Pearson Correlation coefficient
- Spearman's Correlation Coefficient
- Test
cor.test(X ~ Y)
- Person's testcor.test(X ~ Y, method = 'spearman')
- Person's test
- Correlation between a numeric variable and a factor (non numeric variable) -
- Charts
boxplot(Y ~ A)
or just useplot(Y ~ A)
- Numbers
- Coefficient of Determination
lm(Y~A)
(Linear Model)
- Coefficient of Determination
- Test
- Test on means
- j = 2
- Parametric - Welch test:
t.test(Y~A)
- Non-parametric - Wilcoxon Test:
wilcox.test(Y~A)
- Parametric - Welch test:
- j > 2
- Parametric -
oneway.test(Y~A)
- Non-parametric -
kruskal.test(Y~A)
- Parametric -
- j = 2
- Test on variance
- j = 2
- Parametric -
var.test(Y~A)
- Non-parametric -
fligner.test(Y~A)
- Parametric -
- j > 2
- Parametric -
barlett.test(Y~A)
- Non-parametric -
fligner.test(Y~A)
- Parametric -
- j = 2
- Test on means
- Charts
- Correlation between 2 factors -
- Charts
- mosaic plot -
plot(B~A)
You get mosaic plot automatically if it's 2 factos
- mosaic plot -
- Numbers
- Contingency tables -
table(A,B)
-->prob.table((A,B), 1)
orprob.table((A,B), 2)
- Contingency tables -
- Test
- Pearson's test on independence or
test - chisq.test(B~A)
- Pearson's test on independence or
- Charts
π 31-10-2024 - Thu
βοΈ Lab session
LabSess 3 - 2024-10-31 - Computational Statistical Inference - DATS
We practiced all the tools introduced in the class of 2024-10-29 into RStudio.
π 05-11-2024 - Tue
π Theory
03 - Computational Statistical Inference - DATS
pariwise.t.test(Y,A)
-pariwise.wilcox.test(Y~A)
library(FactoMineR)
condes(df,'nb')
andcatdes(df,'nb')
- ExTheo_5nov2024.Rmd example
π 12-11-2024 - Tue
Preparation for Midterm.
Work in class on Midterm 2023-2024.
π 14-11-2024 - Thu
- Preparation for Midterm.
- Work in class on Midterm 2023-2024.
- Kyoto data analysis
π 19-11-2024 - Tue
Midterm exam!
π 26-11-2024 - Tue
π Theory
04 - Statistical modeling through regression - DATS
- Linear models
- Least square method
π 28-11-2024 - Thu
π Theory
Lab session
π 03-12-2024 - Tue
π Theory
04 - Statistical modeling through regression - DATS
- Interpretation of
lm()
method output in R-Studio. - Fisher test
- 3 ways of defining the fisher test
- Testing multiple variables at the same time:
anova(submodel,Model)
- Output interpretation
- Multiple correlation coefficient
- Prediction based on linear model
predict(<model>, newdata=<dataframe>, interval = "prediction")
- Model validation
plot(<model>)
interpretation
π 10-12-2024 - Tue
π Theory
04 - Statistical modeling through regression - DATS
- Residuals
- Diagnostics
- Picking Best model
π 12-12-2024 - Thu
Lab session on multiple linear regression.
π 17-12-2024 - Tue
π Theory
ββββββββββββ
βββ COMPLETARE βββ
ββββββββββββ